ICOME
    FOLLOW US: facebook twitter instagram youtube

Unit 5

Unit-5:Trigonometry

(a) Trigonometric ratios and trigonometric identities

(b)Application of trigonometry


Q1. If 2cotA = 1, find the value of
1 - tan2A/1 + tan2A
.

(a) 5/3 (b) 6/5 (c) 4/5 (d) 3/5

Solution.
cotA =
1/2

So tanA = 2
=
1 - (2)2/1 + (2)2

=
1 - 4/1 + 4

=
3/5

Solution

Q2. The value of tanθ is always less than 1.

(a) true (b) false (c) can't say

Solution.
(b) false
Solution

Q3. If the angle remains the same but lengths of the sides of the triangle is varying then trigonometric ratios will _________

(a) Decrease (b) Increase (c) Remains same (d) None of these

Solution.
(c) Remains same
Solution

Q4. The value of sinθ increase as θ increases.

(a) True (b) False (c) Constant (d) None of these

Solution.
(a) True
Solution

Q5. Find the value of x.
tan9x = sin 45o . cos 45o + sin 30o

(a) 5o (b) 10o (c) 15o (d) 20o

Solution.
tan9x = sin 45o . cos 45o + sin 30o

tan 9x =
1/√2
.
1/√2
+
1/2


=
1/2
+
1/2
= 1

tan9x = 1

tan9x = tan45o

9x = 45o

x = 5o
Solution

Q6. In a triangle of ABC right angled at C and ∠A = ∠B, Is tanA = tanB ?

(a) Yes (b) No (c) Can't say

Solution.
(a) Yes
Solution

Q7. Given that cotA =
1/√3
, find the value of =
(1/cosecA) + cosA/(1/cosecA) - cosA
.

(a) 2-√3 (b) 2 (c) √3 (d) 2 + √3

Solution.
=
sinA + cosA/sinA - cosA
=
tanA + 1/tanA - 1


=
√3 + 1/√3 - 1


=
√3 + 1/√3 - 1
x
√3 + 1/√3 + 1


(√3 + 1)2/2


3 + 1 + 2√3/2
=
4 + 2√3/2


= 2 + √3
Solution

Q8. If tanθ +
1/tanθ
= 3, find the value of tan2θ +
1/tan2θ


(a) 3 (b) 7 (c) 6 (d) 5

Solution.
(tanθ +
1/tanθ
)2 = tan2θ +
1/tan2θ
+ 2 . tanθ .
1/tanθ


9 = tan2θ +
1/tan2θ
+ 2

tan2θ +
1/tan2θ
= 7
Solution

Q9. If tanθ + cotθ = 2, find the value of tan2θ + cot2θ.

(a) 4 (b) 1 (c) 3 (d) 2

Solution.
(tanθ + cotθ)2 = 4

tan2θ + cot2θ + 2.tanθ.cotθ = 4

tan2θ + cot2θ = 2
Solution

Q10. Find the value of 3tan2A - 3(1/cosA)2.

(a) 2 (b) -3 (c) -2 (d) 3

Solution.
3tan2A - 3sec2A
3(tan2A - sec2A )
= 3(-1) -3
Solution