ICOME
    FOLLOW US: facebook twitter instagram youtube
JOIN ICOME
JOIN ICOME
JOIN ICOME

Welcome to Quiz Corner

Q1. Find the value of sin2 41 + sin2 49

(a) 1 (b) 2 (c) 3 (d) 4

Solution.
sin(90o - 41o) = cos41o sin49o

= sin241o + cos2 41o = 1
Solution

Q2. If sinθ + sin2θ = 1, then cos2θ + cos4θ =

(a) 2 (b) 1 (c) 3 (d) 4

Solution.
sinθ = 1 - sin2θ = cos2θ

sin2θ = cos4θ

So, cos2θ + cos4θ = sinθ + sin2θ = 1
Solution

Q3. What is the value of 1/(1 + cot2θ) + 1/(1 + tan2θ)

(a) 4 (b) 3 (c) 1 (d) 2

Solution.
= 1/cosec2θ + 1/sec2θ = sin2θ + cos2θ = 1
Solution

Q4. If A,B,C are the interior angles of a triangle ABC , then tan(B + C/2) =

(a) cotC (b) cot(A/2) (c) tan(A/2) (d) tan B

Solution.
In triangle ABC we know that

A + B + C = 180o

B + C = 180o - A

B + C/2 = 90 - A/2

tan(B + C/2) = tan(90 - A/2) = cotA/2
Solution

Q5. Find the value of A , If sec4A = cosec(A - 20) where 4A is an acute angle.

(a) 72o (b) 22o (c) 33o (d) 45o

Solution.
sec4A = sec{90 - (A - 20)}

sec4A = sec{90o - (A - 20)}

4A = 90o - A + 20o

5A = 110o

A = 22o
Solution

Q6. tan10o . tan15o . tan75o . tan80o = _____________.

(a) 4 (b) 3 (c) 2 (d) 1

Solution.
tan10o = tan(90 - 80) = cot 80o

∴ tanθ . cotθ = 1

So = tan10o . tan15o . tan75o . tano

= cot80o . cot75o . tan75o . tan80o

= 1

Solution

Q7. tan1o . tan2o . tan3o ---------tan89o

(a) 4 (b) 3 (c) 2 (d) 1

Solution.
= tan1o . tan2o . tan3o ---------tan89o

= tan(90o - 89o) . tan(90o - 88o) tan(90o - 87o)----------tan89o

= cot89o . cot88o . cot87o . -------tan45o-----tan87o . tan88o . tan89o

= 1

∴ tanθ . cotθ = 1
Solution

Q8. Find the value of x.
√2sin 3x = 1

(a) 20o (b) 15o (c) 10o (d) 5o

Solution.
sin 3x = 1/√2

sin 3x = sin45o

3x = 45o

x = 15o
Solution

Q9. If tanθ + cotθ = 2, find the value of tan9θ + cot9θ .

(a) 5 (b) 4 (c) 2 (d) 3

Solution.
tanθ + 1/tanθ = 2

tan2 θ - 2 tanθ + 1 = 0

(tanθ - 1)2 = 0

tanθ = 1

tanθ = tan45o

θ = 45o

= tan9 θ + cot9θ

= (tanθ)9 + (cotθ)9

(tan45o) 9 + (cot45o)9

= 19 + 19

= 1 + 1 = 2
Solution

Q10. 2/3 cosec258o - 2/3 cot58o . tan 32o - 5/3 tan13o . tan 37o . tan 45o .tan53o . tan77o

(a) 2 (b) -2 (c) -1 (d) 1

Solution.
2/3(cosec258 - cot258) - 5/3(cot77o . cot53o . tan45o . tan53o . tan77o )

= 2/3(1) - 5/3(1)

2/3 - 5/3 = -1

∴ tan(90o - 58o) = cot58o

tan(90o - θ) = cotθ

tanθ . cotθ = 1

Solution