Q1.
In identity function Domain is equal to
(a) 0 (b) Range (c) 1 (d) ∞
Solution.
(b) Range
Solution
Q2.
Integrate the function :
y = ex(cos2x - sin2x)
(a) exsin2x + c
(b) cos2x + c (c) ex.cos2x + c (d) ex + c
Solution.
(c) ex.cos2x + c
Solution
Q3.
Write simplified value of 3A - (A + I)2, if A2 = A , where A is square matrix .
(a) I (b) -I (c) A (d) -A
Solution.
(b) -I
Solution
Q4.
The side of an equilateral triangle is increasing at the rate of 2cm/s . At what rate is its area increasing , when the side of the triangle
is 25 cm ?
(a) 25√3 cm2/s (b) 30√3 cm2/s (c) 15√3 cm2/s
(d) 50√3 cm2/s
Solution.
25√3 cm2/s
Solution
Q5.
There are two matrix A and B, having order (1 x 3) and (3 x 2) respectively, then order of AB is .
(a) (1 x 3) (b) (3 x 2) (c) (3 x 3) (d) (1 x 2)
Solution.
(d) (1 x 2)
Solution
Q6.
If a matrix has 9 elements, then write all possible orders it can have .
(a) (1 x 9)(9 x 1) (b) (9 x 9)
(c) (1 x 1) (d) (3 x 3)
Solution.
(a) (1 x 9)(9 x 1)
Solution
Q7.
If T6 = 6, find S11 .
(a) 121 (b) 66 (c) 6 (d) 11
Solution.
(b) 66
Solution
Q8.
In a quadratic equation x2 + px + q = 0 , (2 - √3) is a root of this equation find the value of p and q.
(a) (3,2) (b) (4,1) (c) (2,3) (d) (-4,1)
Solution.
(d) (-4,1)
Solution
Q9.
Find first term of a GP, whose 2nd term is 2 and sum of infinite term is 8 will be .
(a) 4 (b) 1 (c) 3
(d) 5
Solution.
(a) 4
Solution
Q10.
Find the area of an equilateral triangle inscribed in the circle .
x2 + y2 + 2gx + 2fy + c = 0 .
(a) (3√3)(r2) (b) (3√3r2)/4 (c) (3√3)r (d) 2r2
Solution.
(b) (3√3r2)/4
Solution