Q1.
If x:y = 3:2, So find the value of
x2 - y2 / (x - y)
(a) 3 (b) 5 (c) 2 (d) 1
Solution.
(x - y)(x + y) / (x - y)
= (x + y)
= 5
Solution
Q2.
If A:B = 2:3 and B:C = 3:7 , find the value of (A + B):(B + C):(C - A)
(a) 2:2:1 (b) 2:1:1 (c) 1:2:1
(d) 1:1:2
Solution.
A:B:C = 2:3:7
5:10:5 = 1:2:1
Solution
Q3.
A set of 15 points, in which 6 are collinear, find how many triangles can be formed.
(a) 290 (b) 195
(c) 400 (d) 435
Solution.
= 15 c
3 - 6 c
3
=
15! / 3! x 12!
-
6! / 3! x 3!
=
15 x 14 x 13 x 12! / 3 x 2 x 12!
-
6 x 5 x 4 x 3! / 3 x 2 x 3!
= 5 x 7 x 13 - 2 x 5 x 2
= 35 x 13 - 20
= 455 - 20 = 435
Solution
Q4.
Line 8x + 15y = 120 cuts x and y axis at A and B respectively. Find the distance between A and B .
(a) 17 (b) 8 (c) 15 (d) 20
Solution.
AB
2 = OB
2 + AO
2
AB
2 = 64 + 225
AB = 17
Solution
Q5.
Find the ∠BAC + ∠OBC in the given figure.
(a) 800
(b) 1200 (c) 750 (d) 900
Solution.
∠BOC = 2∠BAC
BO = OC
∠OBC = ∠OCB
∠BOC + 2∠OBC = 1800
2∠BAC + 2∠OBC = 1800
∠BAC + ∠OBC = 900
Solution
Q6.
If sinθ + cosθ = √3 cos(900 - θ), find the value of tanθ .
(a) (√3-1)/2
(b) 1/2 (c) √3 - 1 (d) (√3 + 1)/2
Solution.
sinθ + cosθ = √3 sinθ
sinθ - √3 sinθ = cosθ
sinθ (1 - √3) = cosθ
tanθ = 1/(1 - √3) x (1 - √3)/(1 + √3) = (1 - √3)/(1 - √3)
= (1 - √3)/(-2)
= (√3 - 1)/2
Solution
Q7.
If A,B,C and D are angles of a cyclic quadrilateral , find the value of cosA + cosB + cosC + cosD .
(a) 3 (b) 1 (c) 0 (d) 2
Solution.
A + C = 180
A = 180 - C
cosA = -cosC
Similarly cosB = -cosD
= cosA + cosB + cosC + cosD
= - cosC - cosD + cosC + cosD
= 0
Solution
Q8.
Find the value of
a2 + b2 + c2 / bc + ca + ab
, if a + b + c = 0
(a) -2 (b) -3 (c) 2 (d) 3
Solution.
(a) -2
(a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
Solution
Q9.
If logy x . logx y = x and x2 + y = 3 , find the value of x and y .
(a) (1,1) (b) (1,2) (c) (1,3) (d) (2,4)
Solution.
(logx/logy) . (logy/logx) = x
x = 1
(1)2 + y = 3
1 + y = 3
y = 2
Solution
Q10.
If S.D of x is 1, find the S.D of y = (x - a)/b
(a) 1/b (b) b (c) 1 (d) a
Solution.
(a) 1/b
Solution