ICOME
    FOLLOW US: facebook twitter instagram youtube
JOIN ICOME
JOIN ICOME
JOIN ICOME

Welcome to ICOME Quiz Corner

1/2

Q1. Convert
(i + 1)2/(3 - i)
into the form of a + ib .

(a) -
1/5
+
3/5
i

(b) 2 + 3i

(c)
1/5
-
3/5
i

(d) 4 - 9i

Solution. a
(1 + i)2/(3 - i)
=
1 + i2 + 2i/(3 - i)
=
2i/(3 - i)


=
2i(3 + i)/(3 - i)(3 + i)
=
2i(3 + i)/(9 + 1)
=
i(3 + i)/5


=
3i + i2/5
= -
1/5
+
3/5
i
Solution

Q2. Find the multiplicative inverse of 4 + 3i

(a) 4 + 3i

(b)
4/25
-
3/25
i

(c) 4 - 3i

(d)
4/25
+
3/25
i

Solution.b
let z = 4 + 3i

multiplicative inverse is
1/z


1/4 + 3i
=
4 - 3i/(4 + 3i)(4 - 3i)
=
4 - 3i/16 - 9i2




=
4/25
-
3/25
i

or

shortcut
1/2
=
/lzl2
Solution

Q3. Find the value of (
1 + i/1 - i
)8

(a) 1

(b) 2

(c) 3

(d) 4

Solution. a
(
1 + i/1 + i
) (
1 + i/1 + i
) =
1 + 2i + i2/1 - (i2)
=
1 + 2i - 1/1 + 1


= i

= i8 = (i4)2 = (1)2 = 1
Solution

Q4. zz̅ + (3 - i)z + (3 + i)z̅ + 1 = 0 represents a circle with

(a) centre (-3,-1) and radius 3

(b) centre (-3,1) and radius 3

(c) centre (-3,-1) and radius 4

(d) centre (-3,1) and radius 4

Solution. a
Given that z.z̅ + (3 - i) z +(3 + i)z̅ + 1 = 0

Put z = x + iy and z̅ = x - iy ,

we get (x + iy)(x - iy) + (3 - i)(x + iy) + (3 + i) (x - iy) + 1 = 0

⇒ x2 + y2 + 3x + 3iy - ix + y + 3x - 3iy + ix + y + 1 = 0

⇒ x2 + y2 + 6x + 2y + 1 = 0

∴ centre = (-g, -f) = (-3,-1)

and radius = √( g2 + f2 - c)

= √( 9 + 1 - 1) = √9 = 3
Solution

Q5. Find the value of 1 + w27 + w30

(a) 1

(b) 3

(c) 2

(d) 4

Solution. b
1 + (w3)9 + (w3)10

∴ w3 = 1

= 1 + 1 + 1 = 3

Note : 1 + wr + w2r = 3 , if r is multiple of 3 .
Solution