ICOME
    FOLLOW US: facebook twitter instagram youtube
JOIN ICOME
JOIN ICOME
JOIN ICOME

Welcome to ICOME Quiz Corner

Q1. Find the value of
x + 8 sinx/ 4x + 10

Solution.
As we know that, -1 ≤ sin x ≤ 1 for all x

-8 ≤ 8 sinx ≤ 8

x - 8 ≤ x + 8 sinx ≤ x + 8

dividing all terms by 4x + 10

x - 8/ 4x + 10
x + 8 sinx/ 4x + 10
x + 8/ 4x + 10


x + 8/ 4x + 10
=
1 - 8/x/ 4 + 10/x
=
1/ 4


So,
x + 8 sinx/ 4x + 10
=
1/ 4
Solution

Q2. Find the value of x1/1-x

indeterminate form of 1

log y =
log x/ 1 - x


log y = -1 as x → ∞

y = 1/e

log x/ 1 - x
= -1
Solution

Q3. Find the value of
4x4 - 3x + 6/ x4 - 6x2 + 2

Solution.
4 - 3/x3 + 6/x4/ 1 - 6/x2 + 2/x4
= 4

Solution

Q4. Find the value of
(x - 4)/ lx - 4l


(a) 1 (b) 2 (c) 0 (d) limit does not exist

Solution.
(x - 4)/ -(x - 4)
= -1

(x - 4)/ (x - 4)
= 1

LHL ≠ RHL , So limit does not exist
Solution

Q5. Find the value of
(1 + x)5 - 1/ x

Solution.
Put 1 + x = y

x = y - 1

x → 0 , y → 1

=
y5 - 1/y - 1
= 5(1)5 - 1 = 5
Solution

Q6. Find the value of
ex - e4/ x - 4

Solution.
Apply D'Hospital law, So derivate the terms

ex - 0 /1 - 0


= ex = e4
Solution

Q7. Evaluate
e-x - e-1/ x - 1

Solution.
Apply D'Hospital law,

- e-x = -
1/e3
Solution

Q8. Evaluate
√(5x4 - 6x2 + 9x + 10)/ 4x2

Solution.
√(5 - 6/x2 + 9/x3 + 10/x4) / 4
=
√5/ 4
Solution

Q9. Evaluate
4x + lxl/ 9x - 7lxl

(a) 1 (b) 1/2 (c) 5/2 (d) limit does't exist

Solution.
LHL =
4x - x/ 9x + 7x
=
3x/ 16x
=
3/ 16


RHL =
4x + x/ 9x - 7x
=
5x/ 2x
=
5/ 2


LHL ≠ RHL
Solution

Q10. Evaluate
(n + 2)! + (n + 1)!/ (n + 2)! - (n + 1)!

Solution.
=
(n + 2)(n + 1)! + (n + 1)!/ (n + 2)(n + 1)! - (n + 1)!


=
(n + 1)! (n + 2 + 1)/ (n + 1)! (n + 2 - 1)!


=
n + 3/ n + 1
=
1 + 3/4/ 1 + 1/4
= 1
Solution