Q1.
Find the value of
x + 8 sinx/
4x + 10
Solution.
As we know that, -1 ≤ sin x ≤ 1 for all x
-8 ≤ 8 sinx ≤ 8
x - 8 ≤ x + 8 sinx ≤ x + 8
dividing all terms by 4x + 10
x - 8/
4x + 10
≤
x + 8 sinx/
4x + 10
≤
x + 8/
4x + 10
x + 8/
4x + 10
=
1 - 8/x/
4 + 10/x
=
1/
4
So,
x + 8 sinx/
4x + 10
=
1/
4
Solution
Q2.
Find the value of x1/1-x
indeterminate form of 1
log y =
log x/
1 - x
log y = -1 as x → ∞
y = 1/e
∴
log x/
1 - x
= -1
Solution
Q3.
Find the value of
4x4 - 3x + 6/
x4 - 6x2 + 2
Solution.
4 - 3/x3 + 6/x4/
1 - 6/x2 + 2/x4
= 4
Solution
Q4.
Find the value of
(x - 4)/
lx - 4l
(a) 1 (b) 2 (c) 0 (d) limit does not exist
Solution.
(x - 4)/
-(x - 4)
= -1
(x - 4)/
(x - 4)
= 1
LHL ≠ RHL , So limit does not exist
Solution
Q5.
Find the value of
(1 + x)5 - 1/
x
Solution.
Put 1 + x = y
x = y - 1
x → 0 , y → 1
=
y5 - 1/y - 1
= 5(1)
5 - 1
= 5
Solution
Q6.
Find the value of
ex - e4/
x - 4
Solution.
Apply D'Hospital law, So derivate the terms
ex - 0
/1 - 0
=
e
x = e
4
Solution
Q7.
Evaluate
e-x - e-1/
x - 1
Solution.
Apply D'Hospital law,
- e
-x =
-
1/e3
Solution
Q8.
Evaluate
√(5x4 - 6x2 + 9x + 10)/
4x2
Solution.
√(5 - 6/x2 + 9/x3 + 10/x4)
/ 4
=
√5/
4
Solution
Q9.
Evaluate
4x + lxl/
9x - 7lxl
(a) 1 (b) 1/2 (c) 5/2 (d) limit does't exist
Solution.
LHL =
4x - x/
9x + 7x
=
3x/
16x
=
3/
16
RHL =
4x + x/
9x - 7x
=
5x/
2x
=
5/
2
LHL ≠ RHL
Solution
Q10.
Evaluate
(n + 2)! + (n + 1)!/
(n + 2)! - (n + 1)!
Solution.
=
(n + 2)(n + 1)! + (n + 1)!/
(n + 2)(n + 1)! - (n + 1)!
=
(n + 1)! (n + 2 + 1)/
(n + 1)! (n + 2 - 1)!
=
n + 3/
n + 1
=
1 + 3/4/
1 + 1/4
= 1
Solution