Sum of Infinite Terms

Sum of an Infinite Geometric Series

If $a_1 + a_1r + a_1r^2 + \cdots$ is an infinite geometric series, with |r| < 1, then the sum S of all of the terms of this series is given by

$$S = \frac{a_1}{1 - r}.$$

a = first term, r = common ratio

Question 1. Find the sum of an infinite G.P. Whose first term is 28 and second term is 4.

Solution: As per question ,

$$a = t_1 = 28$$

 $t_1 = ar = 4$
 $r(common ratio) = \frac{t_2}{t_1} = \frac{ar}{a} = \frac{4}{28} =$
 $S \infty = \frac{a}{1 - r}$
 $S \infty = \frac{28}{1 - \frac{1}{7}} = \frac{28 \times 7}{6} = \frac{98}{3}$

Question 2. Evaluate $11^{1/2} \times 11^{1/4} \times 11^{1/8} \times \dots \infty$ Solution: = $11^{1/2} \times 11^{1/4} \times 11^{1/8} \times \dots \infty$ infinite = $11^{1/2+1/4+1/8} \dots \infty$ Now, find the sum of $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \infty$ $S \infty = \frac{a}{1-r} = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1$ **So**, $11^1 = 11$

Question 3. Find the sum to infinity of the given series: $\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{32}$

Solution: as we know that $S = \frac{a}{1-r}$ = $\frac{1}{2} \{1 + \frac{1}{4} + \frac{1}{16} + \dots \infty\}$ a = 1, r (common ratio) = $\frac{1}{4}$ $S = \frac{a}{1-r} = \frac{1}{2} \{\frac{1}{1-\frac{1}{4}}\} = \frac{2}{3}$

Question 4. Find the sum of 0. 7 Solution: We can write

$$S_{\infty} = \frac{a}{1-r} = \frac{7}{9}$$

$$= \frac{7}{10} + \frac{7}{10^2} + \frac{7}{10^3} - \infty$$

$$S_{\infty} = \frac{a}{1-r} = \frac{\frac{7}{10}}{1-(\frac{1}{10})}$$

$$= \frac{(\frac{7}{10})}{(\frac{9}{10})} = \frac{7}{9}$$

Or

If we convert 0. $\overline{7}$ into a rational number 0. $\overline{7} = \frac{7}{9}$ This will be equal to the sum of the series.

Question 5. If $x = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots \infty$, $y = 1 + \frac{1}{4} + \frac{1}{4^2} + \dots \infty$, find the product of xy. Solution : we find the sum of x series $S = \frac{a}{1-r} = \frac{1}{1-\frac{1}{3}} = \frac{3}{2}$ Now we find the sum of y series $S = \frac{a}{1-r} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}$ $xy = \frac{3}{2}x + \frac{4}{3} = 2$

Question 6. If $x = 1 + \frac{1}{2} + \frac{1}{2^2} + ----\infty$ $y = 1 + \frac{1}{6} + \frac{1}{6^2} + ----\infty$, find the product of xy. Solution : we find the sum of x series $S_{\infty} = \frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = 2$ Now we find the sum of y series $S_{\infty} = \frac{a}{1-r} = \frac{1}{1-\frac{1}{6}} = \frac{6}{5}$

 $xy = 2 x \frac{6}{5} = \frac{12}{5}$