Q1.
The value of log(xn/ym) + log(yn/zn) + log(zn/xn).
(a) 1 (b) 2 (c) 3 (d) 0
Solution.
∴ log1 = 0
Solution
Q2.
The value of the expression :alogax . logxy . logyz . logzb
(a) a (b) b (c) c (d) d
Solution.
alogab = b
∴ logax . logxy . logyz . logzb =
logab
NOTE : alogak = k
Solution
Q3.
log8(log5x) = 1/3, find x.
(a) 15 (b) 26 (c) 25 (d) 10
Solution.
log8(log5x) = 1/3log88
log8(log5x) = log881/3
log8(log5x) = log82
log5x = 2log55
log5x = log552
x = 25
Solution
Q4.
Find the value of
log38/log916 . log410
(a) 3 log102 (b) log10 (c) 5logx (d) 10log4
Solution.
=
log 8/log 3
.
log 9/log 16
.
log 4/log 10
=
3 log 2 . 2 log 3 . 2 log 2/log3 . 4 log 2 . log 10
=
3log2/log 10
= 3 log
102
Solution
Q5.
If log 2 = 0.30103 , the number of digits in 216 is :
(a) 2 (b) 3 (c) 4 (d) 5
Solution.
(d) 5
x = 216
log x = 16 log 2 = 16 x (0.30103) = 4.81648
As characteristics of logx is 4, so x must have 5 digits.
Solution
Q6.
(log a)2 - (log b)2 = ?
(a) log ab (b) log(a+b) (c) log(a/b) (d) log(ab). log(a/b)
Solution.
= (log a - log b).(log a + log b)
= log(ab). log(a/b)
Solution
Q7.
log97/log617
- log37/log√617
= x , find x .
(a) 0 (b) 1 (c) 2 (d) 3
Solution.
log37/log617
-
log37/log617
= 0
{log
97 =
log 7/log 9
=
log 7/2log 3
=
1/2
log
37 =
log37/2
}
Solution
Q8.
Find a2 + b2 if log(a+b)/5 = 1/2 (log a + log b)
(a) 15 (b) 15 ab (c) 23 (d) 23 ab
Solution.
log[(a+b)/5]2 = log(ab)
a2 + b2 + 2ab = 25ab
a2 + b2 = 23 ab
Solution
Q9.
4log a + 4log a2 + 4log a3 + --------- + 4log an = x, find x .
(a) 2n(n+1)log a (b) log a (c) 2n (d) (n+1)log a
Solution.
= 4[log a + log a
2 + log a
3 + --------- + log a
n]
= 4[log a
(1 + 2 + 3 + ------+ n)]
= 4[log a
n(n+1)/2]
= 4
n(n+1)/2
log a
2n(n+1) log a
Solution
Q10.
log√(27+10√2) = log(5+x), find x.
(a) 4 (b) 1 (c) √2 (d) √3
Solution.
log√[5 + √2]2 = log(5 + x)
5 + √2 = 5 + x
x = √2
Solution