ICOME
    FOLLOW US: facebook twitter instagram youtube
JOIN ICOME
JOIN ICOME
JOIN ICOME

Solution

Section B


Solution. 5
Given that, A is a skew- symmetric matrix of order 3.
So, A' = -A ⇒ lA'l = l-Al
lAl = (-1)3 lAl
lA'l = lAl
lA'l = lAl and lkAl = knlAl
lAl = -lAl
2lAl = 0
lAl = 0
Solution. 6
Give that the function is continuous at x = 4 .
= = 4k + 1
⇒ 7 = 4k + 1 ⇒ 6 = 4k ⇒ k =
6/4
=
3/2

Solution. 7
We know that , area of an equilateral triangle. A =
√3/4
a2 (a = side).
. As per question
da/dt
= 4 cm/s
on differentiating both sides w.r.t.t, we get
dA/dt
=
√3/4
x 2a x
da/dt

=
√3/4
x 2 x 20 x 4
= 40√3 cm2/s
( ∴ Altitude =
√3/2
a)
a = 20
Solution. 8

Solution. 9
, and are coplaner .

So, [ ] = 0

= 0

1(0 + 9) - (x - 2)(-2 + 9) + 4(3 -0) = 0
9 - 7x + 14 + 12 = 0
35 = 7x
x = 5
Solution. 10
We have ā = 6î + 3ĵ - 2k̂ and b̄ = 2î + 2ĵ - 5k̂

Therefore, the vector equation of the line is

r̄ = ā + μb̄

r̄ = 6î + 3ĵ - 2k̂ + μ( 2î + 2ĵ - 5k̂)

Now, r̄ is the position vector of any point P(x,y,z) on the line .

therefore , xî + yĵ - zk̂ = 6î + 3ĵ - 2k̂ + μ (2î + 2ĵ - 5k̂)

Eliminating μ, we get

x - 6/2
=
y - 3/2
=
z + 2/-5

Solution. 11
May (z) = 9x + 8y

subject to 6x + 2y ≤ 100

4x + 5y ≤ 120

x ≥ 0, y ≥ 0 .
Solution. 12
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

x is a random variable getting tail

x = 0, 1, 2, 3
x 0 1 2 3
P(x) 1/8 3/8 3/8 1/8


Mean = f(x) = ∑ xipi

= 0 x
1/8
+ 1 x
3/8
+ 2 x
3/8
x 3 x
1/8


=
3/8
+
6/8
+
3/8
=
12/8
= 1.5