Normal Distribution
Question
Q1.
Find the parameters of Normal Distribution whose p.d.f is -
f(x) =
1/9√(2π)
e(-1/162)(x - 12)2
(a) (12,81)
(b) (12,12)
(c) (12,9)
(d) (12,4)
Solution.
parameters of normal distribution is x ∼ N (μ , σ²)
compare the given p.d.f with
So in the case σ = 9 , μ = 12
x ∼ N (12,81)
Solution
Q2.
Find the parameters of Normal Distribution whose p.d.f is -
f(x) =
1/√(18π)
e(-1/18)(x - 5)2
(a) (1,1)
(b)(0,1)
(c) (5,9)
(d) (4,5)
Solution. c
parameters of normal distribution is x ∼ N (μ , σ²)
compare the given p.d.f with
So in the case σ = 3, μ = 5
x ∼ N (5,9)
Solution
Q3.
Find the parameters of Normal Distribution whose p.d.f is -
f(x) =
1/√(2π)
e(-1/2)(x2 - 4x + 4)
(a) (1,1)
(b) (2,1)
(c) (2,2)
(d) (0,1)
Solution.b
parameters of normal distribution is x ∼ N (μ , σ²)
compare the given p.d.f with
So in the case σ = 1,(x
2 - 4x + 4) = (x - 2)
2 , μ = 2
x ∼ N (2,1)
Solution
Q4.
Find the parameters of Normal Distribution whose p.d.f is -
f(x) = constant .
e-(x2 - 12x + 36)
(a) (1/2 ,6)
(b) (6,1)
(c) (6,0)
(d) (6,1/2)
Solution.d
parameters of normal distribution is x ∼ N (μ , σ²)
compare the given p.d.f with
In this case constant =
1/σ√(2π)
-
1/2σ²
= -1
σ² =
1/2
σ = √(
1/2
)
μ = 6
x ∼ N(6,1/2)
Solution
Q5.
Find the parameters of Normal Distribution whose p.d.f is -
f(x) = constant .
e-(1/8)(x2 - 2x + 1)
(a) (1,4)
(b) (2,3)
(c) (0,1)
(d) (4,1)
Solution.a
parameters of normal distribution is x ∼ N (μ , σ²)
compare the given p.d.f with
In this case constant =
-
1/2σ²
= -
1/8
1/σ²
=
1/4
σ = 2 and (x
2 - 2x + 1) = (x - 1)²
μ = 1
x ∼ N(1,4)
Solution