ICOME
    FOLLOW US: facebook twitter instagram youtube
JOIN ICOME
JOIN ICOME
JOIN ICOME

Normal Distribution





Question


Q1. Find the parameters of Normal Distribution whose p.d.f is -

f(x) =
1/9√(2π)
e(-1/162)(x - 12)2

(a) (12,81)

(b) (12,12)

(c) (12,9)

(d) (12,4)

Solution.
parameters of normal distribution is x ∼ N (μ , σ²)

compare the given p.d.f with



So in the case σ = 9 , μ = 12

x ∼ N (12,81)
Solution

Q2. Find the parameters of Normal Distribution whose p.d.f is -

f(x) =
1/√(18π)
e(-1/18)(x - 5)2

(a) (1,1)

(b)(0,1)

(c) (5,9)

(d) (4,5)

Solution. c
parameters of normal distribution is x ∼ N (μ , σ²)

compare the given p.d.f with



So in the case σ = 3, μ = 5

x ∼ N (5,9)
Solution

Q3. Find the parameters of Normal Distribution whose p.d.f is -

f(x) =
1/√(2π)
e(-1/2)(x2 - 4x + 4)

(a) (1,1)

(b) (2,1)

(c) (2,2)

(d) (0,1)

Solution.b
parameters of normal distribution is x ∼ N (μ , σ²)

compare the given p.d.f with



So in the case σ = 1,(x2 - 4x + 4) = (x - 2)2 , μ = 2

x ∼ N (2,1)
Solution

Q4. Find the parameters of Normal Distribution whose p.d.f is -

f(x) = constant . e-(x2 - 12x + 36)

(a) (1/2 ,6)

(b) (6,1)

(c) (6,0)

(d) (6,1/2)

Solution.d
parameters of normal distribution is x ∼ N (μ , σ²)

compare the given p.d.f with



In this case constant =
1/σ√(2π)


-
1/2σ²
= -1

σ² =
1/2


σ = √(
1/2
)

μ = 6

x ∼ N(6,1/2)
Solution

Q5. Find the parameters of Normal Distribution whose p.d.f is -

f(x) = constant . e-(1/8)(x2 - 2x + 1)

(a) (1,4)

(b) (2,3)

(c) (0,1)

(d) (4,1)

Solution.a
parameters of normal distribution is x ∼ N (μ , σ²)

compare the given p.d.f with



In this case constant = -
1/2σ²
= -
1/8


1/σ²
=
1/4


σ = 2 and (x2 - 2x + 1) = (x - 1)²

μ = 1

x ∼ N(1,4)
Solution